Climate dynamics    

 

    

 



 

Climate Dynamics
Climate dynamics are theories about how the climate is developing in time. In this case the analysis is based on analysis of the power spectrum in data series and the theory of coupled oscillators. The power density spectrum in time series from nature is falling by about 1/frequency. This implicates that time series from nature has no stationary mean value. The mean value is dependent on the time series scaling range, and the climate state is dependent on the phase relations between a spectrum of causes.

Coupled oscillators

In this analysis we may understand the forced gravitation oscillation between the earth, sun and the moon as a forced coupled oscillation system to the earth. The tide and the earth rotation responds as a non-linear coupled oscillation to the forced gravity periods from the moon and the sun. This is a complex oscillation in periods between hours and thousands of years. The forced gravitation introduces a tidal mixing in the Atlantic Ocean. This tidal mixing introduces temperature and salinity fluctuations that influences climate and the eco system. This research has focus on the respond from harmonics from the 18.6 yr lunar nodal amplitude cycle and the 9.3 yr phase cycle.


North Atlantic water temperature
 

This figure shows North Atlantic water is measured in the Scotland – Faroe channel by Fisheries Research Service (FRS), Aberdeen in Scotland. It represents one of the longest data series in the world and a good climate indicator for climate dynamics in northern Europe.

A wavelet analysis of the data series shows that major temperature fluctuations are correlated to the lunar nodal tidal cycles of about 9.3 and 18.6 years. This analysis indicates that long tides may have an important regional influence on climate change in the Northern part of Europe  (Yndestad, Turrell, Ozhigin, 2008).


 

 Nodal tide
 


 

 
















 

 

 

 

 

 

















 

 

Publications

2009: The influence of long tides on ecosystem dynamics in the Barents Sea
          Deep Sea Research Part II. 56
Topical Studies in Oceanography (2009) 2108-2116.

2008: Yndestad Harald; Turrell, William R and Ozhigin, Vladimir: Lunar nodal tide effects on variability of sea level,
          temperature and salinity in the Faroe-Shetland Channel and the Barents Sea.

          Deep Sea Research Part I. 55/12. pp 1201-1217.

2008: Yndestad, H: Prognoser for tilsig til vannkraft basert på neurale nettverk. Rapport 2008/01. Høgskolen i Ålesund.
 

2007: Yndestad, H:
"The Lunar nodal tide influence on the climate dynamics and the eco system
          dynamics in the the Barents Sea". Ecosystem Dynamics in the Norwegian Sea and Barents Sea.
          ECONORTH Symposium 12.th-15. March 2007. Tromsø. Norway.


2006:   Yndestad, H:
"Possible Lunar nodal tide effects on climate and the eco system in the Nordic Seas
           and the Barents Sea". ICES annual conference. CM 2006/C:02. Climate variability in the relation
           to previous decades: physical and biological consequences. Maastricht, 19-23 Sept 2006.

2006:   Yndestad, H:
"The Arctic Ocean as a coupled oscillating system to the forced
           18.6 yr lunar nodal cycle".
20 Years of Nonlinear Dynamics in Geosciences.

           American Meteorological Society & European Geosciences Union.
           Rhodes, Greece. June 11-16, 2006.
    
                         

2006:   Yndestad, H
: The influence of the nodal cycle on Arctic climate. ICES Journal of Marine Science.
                               63: 401-420 (2006).

2005:   Yndested, H: Prognoser for tilsig til vannkraft. HiÅ-Rapport 2005/01.

2005:   Yndestad, H: Månens innvirkning på klimaet. Artikkel Innsikt i Sunnmørsposten. 7.mai 2005.

2005:   Yndestad, H: Temporal linkages between the lunar nodal tide and North Atlantic time series.
           European Geophysical Union meeting. CL23 North Atlantic climate variability.
           Vienna 24-29 April 2005.    Poster.

2005:  Yndestad: H: The cause and the effect of the 18.6 yr nodal tide in the Barents Sea.
           GLOBEC International Newsletter. Vol.11, No. 1. April 2005.      
 
2004:   Yndestad, H: The lunar nodal cycle influence on the Barents Sea.
           Doctoral Thesis at NTNU 2004:132.
          
2004:   Yndestad, H: The reponce of the ecosystem of the Nordic Sea to climate.
           Given Trial. 25.11.2004. NTNU.

2004:   Yndestad, H: The Lunar nodal cycle influence on the Barents Sea.
           Chosen Trial. 25.11.2004. NTNU.

2004:  Yndestad ,Turrell, Ozhigin. Temporal linkages between Faroe-Shetland time series and Kola
          section time series.
 ICES CM 2004/M01. Theme Session M. Regime Shifts in the North Atlantic Ocean:
          Coherent or Chaotic

2003:  Yndestad H.
A Lunar nodal spectrum in Arctic time serie. ICES Annual Science Conference Tallinn.
         
ICES CM 2003/T.Theme Session T.
          On the State Stability of the northern
North Atlantic : Patterns and Trends.

2003:  Yndestad H. Er klimaendringene styret av månen?
          Innsikt kronikk i Sunnmørsposten 13.september 2003 .

1999: Yndestad, H: Earth nutation influence on the temperature regime of the Barents Sea.
          ICES Journal of Marine Science; 56: 381-387.


1996: Yndestad, H:  Stationary Temperature Cycles in the Barents Sea. The cause of causes.
          The 84th international ICES Annual Science Conference. ICES CM1996/C14.
          Hydrography Committee. Iceland. October 1996

More papers

Barkin, Yu, Ferrandiz, J., Ferrandez, M. G., Navarro, J., 2007. Prediction of catastrophic earthquakes in 21 century. Geophysical Research Abstracts, Vol. 9, 08643, 2007, SRef-ID: 1607-7962/gra/EGU2007-A-08643.

Barkin, Yu. V. and Ferrandiz, J. M., 2004. Tidal Elastic Energy in Planetary Systems and its Dynamic Role. Astronomical and Astrophysical Transactions, 23, (4), 369 – 384.

Berger, W. H., 2007. Solar modulation of the North Atlantic Oscillation: Assisted by the tides? Quaternary International, 188, 24-30; doi:10.1016/j.quaint.2007.06.028.

Camuffo, D., 2001. “Lunar influences on climate”Earth, Moon and Planets Vols. 85-86: pps 99-113.

Cerveny, R. S. and Shaffer, J. A., 2001. “The Moon and El Nino”Geophysical Research Lettersvol 28, No. 1. pps 25-28. Chain, A. C-L., Kamide, Y., Rempel, E.L., and Santana, W. M., 2006. “On the chaotic nature of solar-terrestrial environment: Interplanetary Alfven intermittency”. Journal of Geophysical Researchvol111, A07S03, doi:10.1029/2005JA011396.

Cook, E. R., Meko, D. M. and Stockton, C. W. 1997. “A new assessment of possible solar and lunar forcing of the bidecadal drought rhythm in the western United States”. Journal of Climate vol 10 pps 1343 -1356.

Currie, R. G., 1981, Evidence for 18.6 year (sic) signal in temperature and drought conditions in North America since A. D. 1800: Journal of Geophysical Research. 86:11,055-11,064.

Currie, R. G., 1984, Evidence for 18.6 year (sic) lunar nodal (sic) drought in western North America during the past millennium: Journal of Geophysical Research. 89:1295-1308.

Currie, R. G., 1987, Examples and implications of 18.6- and 11-yr terms in world weather records, Chap. 22, p. 378-403 in Rampino,

M. R.; Sanders, J. E.; Newman, W. S.; and Konigsson, L.-K.; eds., Climate: History, periodicity, and predictability: International Symposium held at Barnard College, Columbia University, New York, New York, 21-23 May 1984 (R. W. Fairbridge Festschrift): New York, NY, Van Nostrand Reinhold Publishing Corp., 588 p.

Currie, R. W.; Wyatt, Thomas; and O’Brien, D.P, 1993. Deterministic signals in European fish catches, wine harvests, sea level, and further experiments: International Journal of Climatology. 8:255-281.

Currie, R. G. 1995. Variance Contribution of Mn and Sc Signals to Niele River Data over a 30-8 Year Bandwith. Journal of Coastal Research Special Issue No. 17: Holocene Cycles: Climate, Sea Levels and Sedimentation, pp 29-38.

DaSilva, R. R., and Avissar, R., 2006. “The impacts of the Luni-Solar Oscillation on the Arctic Oscillation”. Geophysical Research Letters 32, L22703, doi:10.1029/2005GL023418,2005.

Darwin, G.H. 1877. On the influence of geological changes on the Earth's axis of rotation
Philosophical Transactions of the Royal Society of London. 167, 271.

Darwin, G.H. 1879. On the precession of a viscous spheroid and on the remote history of the earth. Philosophical Transactions of the Royal Society of London. 170: 447-530.

Darwin, G.H. 1880. On the secular change of the orbit of a satellite revolving about a tidally distorted planet. Philosophical Transactions of the Royal Society of London. 171: 713-891.

Imbrie John, Imbrie John Z. 1980. Modeling the Climate response to Orbital Variations. Science. 207, 29 February 1980. p 943-953.

Izhevskii, G. K., 1961. Oceanological Principles as Related to the Fishery Productivity of the Seas. Moscow: Pishcepromizdat. [Translated 1966: Israel Program for Science Transactions. Jerusalem]. 95 pp.

Izhevskii, G. K., 1964. Forecasting of oceanological conditions and the reproduction of commercial fish. All Union Science Research Institute of Marine Fisheries & Oceanography. Israel Program for Science Transactions, 22 pp.

Keeling, Charles D. and T. P. Whorf. 1997. Possible forcing global temperature by oceanic tides. Proceedings, National Academy of Sciences of the United States. 94:8321-8328.

Keeling, Charles D. and Whorf, Timothy P.: 2000. The 1,800-year oceanic tidal cycle: A possible cause of rapid climate change . Proc Natl Acad Sci U S A. 2000 April 11; 97(8): 3814–3819. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0244.

Lindquist, A. 2002. Herring periods of Bohuslan: a cross-sectorial approach. ICES Marine Science Symposia, 215: 343-351.

Ljungman, A. V. 1879. Bidrag till løsningen af frågan om de stora sillfiskenas sekulära periodisitet. Tidskrift for Fiskeri, 5: 257-268. (In Swedish).

Loder, J. W., and Garret, C. 1978. The 18.6 year cycle of the sea-surface temperature in the shallow seas due to tidal mixing. Journal of Geophysical Research. 83: 1967–1970.

McKinnel, S. M. and Crawford, W. R., 2007. “The 18.6-year lunar nodal cycle and surface temperature variability in the north-east Pacific”. Journal of Geophysical Research vol 112, C02002,doi:10.1029/2006JC003671; 15 pps.

Maksimov, I. V. and Smirnov, N. P. 1964. Long-range forecasting of secular changes of the general ice formation of the Barents Sea by the harmonic component method. Murmansk Polar Sci. Res. Inst., Sea Fisheries, 4: 75-87. 

Maksimov, I. V. and Smirnov, N. P. 1965. A contribution to the study of causes of long-period variations in the activity of the Gulf Stream. Oceanology. 5:15-24.

Maksimov, I. V. and Smirnov, N. P. 1967. A long-term circumpolar tide and its significance for the circulation of ocean and atmosphere. Oceanology 7: 173-178 (English edition).

Maksimov, I. V. and Sleptsov-Shevlevich, B. A., 1970. Long-term changes in the tide-generation force of the moon and the iciness of the Arctic Seas. Proceedings of the N. M. Knipovich Polar Scientific-Research and Planning Institute of Marine Fisheries and Oceanography (PINRO). 27: 22-40.

Malkov A.S. 1991. Movement of the earth pole and population dynamics of some commercial fish species from the northern Atlantic. The 79th international ICES Annual Science Symposium. 1991/L: 77.

Malkov A.S. 2002. Movements of the Earth pole and population dynamics of Norwegian spring-spawning herring and Arctic cod. The 90th international ICES Annual Science Symposium. Copenhagen. Denmark, 1 Oct-5. CM 2002/O:09.

 Mazzarela, A. and Palumbo, A., 1994. The Lunar Nodal Induced-Signal in Climatic and Ocean Data over the Western Mediterranean Area and on its Bistable Phasing, Theoretical and Applied Climatology 50, 93-102.

Ottestad, Per. 1942. On Periodical Variations on the Yield on the Great Sea Fisheries and the Possibility of establishing Yield Prognoses. Fiskeridirektoratets Skrifter. Vol, VII. No 5. Bergen. Norway. 

Ottestad, Per. 1979. The sunspots series and biospheric series regarded as results due to a common cause. Meldinger fra Norges landbrukhøgskole, 58:9, Ås. Norway.

Pettersson, Hans. 1915. Long Periodical Variations of the Tide-generating Force. Andr. Fred. Høst & Files. Copenhagen. p. 2-23.

Petterson, Otto, 1905. On the probable occurrence in the Atlantic Current of variations periodical, and otherwise, and their bearing on metrological and biological phenomena. Rapp. P.-v. R´eun. Cons. perm. int. l´Explor. Mer, 42: 221-240.

Pettersson, Otto, 1912, The connection between hydrographical and meteorological phenomena: Royal Meteorological Society Quarterly Journal. 38: 173-191.

Pettersson, Otto, 1914a, Climatic variations in historic and prehistoric time: Svenska Hydrogr. Biol. Komm., Skriften, No. 5, 26 p.

Pettersson, Otto, 1914b, On the occurrence of lunar periods in solar activity and the climate of the earth (sic). A study in geophysics and cosmic physics: Svenska Hydrogr. Biol. Komm., Skriften.

Pettersson, Otto, 1915, Long periodical (sic) variations of the tide-generating force: Conseil Permanente International pour l'Exploration de la Mer (Copenhagen), Pub. Circ. No. 65, p. 2-23.

Pettersson, Otto, 1930, The tidal force. A study in geophysics: Geografiska Annaler. 18: 261-322.

Royer, T. C. 1989. Upper ocean temperature variability in the northeast Pacific: is it an indicator of global warming? Journal of Geophysical Research, 94: 175–183.

Royer Thomas C. 1993. High-Latitude Oeanic Varibility Associated With the 18.6-Year Nodal Tide. Journal of Geophysical Research. 98: 4639-4644. 

Sanders, J E. 1995. Astronomical forcing functions: From Hutton to Milankovitch and beyond: Northeastern Geology and Environmental Science.17: 306-345.

Schlesinger, M. E., and Ramankutty, N. 1994. An oscillation in the global climate system of period 65–70 years. Nature, 367: 723–726.

Satterley, A. K. 1996. The Milankovitch Theory. Earth-Science Reviews, 40: 181–207.

Svansson, A. 2002. Otto Pettersson’s ideas on general ocean circulation. ICES Marine Science Symposia. 215: 104-112.

Tereshchenko, V.V. 1997. Seasonal and year-to-year variation in temperature and salinity of the main   currents along the Kola section in the Barents Sea. Murmansk: PINRO Publ. 71 pp. (in Russian).

Treloar, N. C., 2002 Luni-solar tidal influences on climate variability. International Journal of Climatology 22 No: 12 pps: 1527-154 2002 DOI: 10.1002/joc.783.

Wegner, G. 1996. Herring research: remarks on a 250-year-old theory. ICES Information.. 28:8.

Wood, F. J. 1986. Tidal Dynamics: Coastal Flooding, and Cycles of Gravitational Force. Reidel, Dordrect. 558 pp.

Wunsch, C. and Ferrari, R., 2004. Vertical mixing and the general circulation of the oceans. Annual Review of Fluid Mechanics, 36, 281–314 doi: 10.1146/ annurev.fluid.36.050802.122121.Symposium. 198: 49-55.

Web sites

 

 

 

 

 Last updata: 16.08.2011 by prof. Harald Yndestad
Aalesund university college, 6025 Aalesund,   Norway